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Consideration has been given to the problem of uniform unsteady lateral heating of two bounded cylinders
having dissimilar thermophysical characteristics and being in ideal thermal contact. The exact analytical so-
lution for determination of a three-dimensional temperature field in real space has been found with the use of
the integral-transformation method. The distinctive features of the solution obtained have been investigated
and examples of specific calculations have been given.

Let us consider a system of ideal contact of two bounded cylinders with dissimilar thermophysical charac-
teristics and a zero initial temperature in the plane z = 0. The cylinders have the same radius R and lengths l1 and
l2 respectively. A heat source of constant surface strength QR begins to act throughout the lateral surface of the cylin-
ders (−l1 ≤ z ≤ l2, r = R) at the initial instant of time. On the cylinders’ ends, we have heat exchange with a zero-tem-
perature ambient medium according to the Newton law with heat-transfer coefficients α1 and α2. It is necessary to
find the distribution of the temperature field in the system at any instant of time. Mathematically the problem formu-
lated has the form of two differential heat-conduction equations in cylindrical coordinates
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with the following initial and boundary conditions:
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In the region of contact (z = 0), let it be necessary to satisfy the conjugation conditions
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To problem (1)–(4), we successively apply the finite integral Hankel transformation
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and the Laplace transformation

T
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where µm are the roots of the equation J1(µ) = 0. After the indicated operations, the initial problem is reduced to the
following problem:
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Finally, problem (1)–(4) with partial differential equations has led us to the system of ordinary differential
equations (5) with boundary conditions (6) and conjugation conditions (7). The general solutions of Eqs. (5) are writ-
ten as follows:
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After determination of the integration constants Am, Bm, Cm, and Dm with the use of the boundary conditions and the
conjugation conditions, we obtain the expressions for the temperatures of the contacting cylinders in the transform
space:
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where
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To obtain explicit expressions for the temperature fields we must perform the operations of inverse Laplace and
Hankel transformations on Eqs. (8) and (9) [1–3]. In this connection, the question as to whether the original functions
of the temperature of the solutions obtained exist is topical. It is common knowledge that not any function f(s) in the
space of Laplace transforms can be a transform of a certain function f(t) in real space [2]. As the analysis of the so-
lutions of (8) and (9) shows, they satisfy all the requirements of existence of original functions and corresponding in-
verse transforms. The only singularity exists solely at the boundary of contact (z = 0). But this singularity leads to the
appearance of a certain generalized function in the final solution and it is no barrier to the procedure of inverse trans-
formation. This singularity will be discussed somewhat below. In the process of inversion of the solutions of (8) and
(9), we have employed the standard integrals of Laplace transformations [4] and the Vashchenko–Zakharenko theorem
of expansion and the Borel theorem of multiplication of transforms [2]. In view of the cumbersomeness of these equa-
tions and accordingly the procedures of inverse transformation, we give only the final result, omitting the procedure of
the mathematical computations themselves. The spatial temperature field in the system of bounded heterogeneous cyl-
inders that are in ideal thermal contact and heated from the lateral surface by a heat flux of constant power QR is de-
termined by the following expressions:
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The quantities γkm are the roots of the transcendental equation

λ1 γkm (√a1  βkm cos qkml2 + √a2  h2 sin qkml2) (h1 cos γkml1 − γkm sin γkml1) +

+ λ2 √a1  βkm (γkm cos γkml1 + h1 sin γkml1) (h2 cos qkml2 − qkm sin qkml2) = 0 . (12)

The analysis of Eqs. (10) and (11) obtained shows that they have a much more complex structure than the
solutions for homogeneous cylinders [1, 5], one-dimensional problems of contact heat conduction [1, 5, 6], and three-
dimensional problems in semibounded and unbounded regions [5–8]. In addition to the complex general form of the
final expressions, we must focus our attention on two of their features.

The first feature is that in Eqs. (10) and (11) the indices of the exponents and the denominators of the terms
of the sums of series involve the combination of the quantities γkm

2  + γm
2 . In the cases of homogeneous materials these

terms are the roots of independent transcendental equations for the axial and radial directions. When the problems with
bounded contacting bodies having dissimilar thermophysical characteristics are considered, the roots of longitudinal
transcendental equations, conversely, depend on the quantities γm, which is obvious from expression (12). That is the
reason why they have the double subscript km in our solution. We can call the occurring phenomenon the hybridiza-
tion of the axial and radial roots. Let us assume that it is necessary to introduce m radial terms of the sum into con-
sideration and k axial terms so as to attain the optimum exactness of the solution. Then in the case of a homogeneous
material we will have to solve m + k transcendental equations. If the problem is considered for two heterogeneous con-
tacting bodies, this number increases to m (k + 1). The analysis of Eq. (12) shows that it is precisely the dissimilar
thermophysical characteristics of the contacting objects that are responsible for such a dependence. Indeed, if we set
λ1 = λ2 = λ, a1 = a2 = a, h1 = h2 = h, l1 = 0, and l2 = l, we obtain the well-known ([1, 2, 5]) transcendental equa-
tion for a bounded homogeneous body with the same coefficients of heat transfer on the surfaces z = 0 and z = l:
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h (γ cos γl + h sin γl) + γ (h cos γl − γ sin γl) = 0 .

The second feature of the solution obtained is in the presence of a point unit function η(z) in it. Mathemati-
cally the appearance of this function is predetermined by the fact that expressions for the temperatures in the transform

space (8) and (9) have finite limits at the point z = 0 on condition that s → ∞: 
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=
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problems of heat conduction are considered. It is also noteworthy that in the steady-state case the solution of our prob-
lem has no singularities in the contact plane and it is described by smooth functions [9].

In closing, we give results of calculations of the temperature fields in the process of diffusion welding of two
different systems consisting of cylinders with dissimilar thermophysical characteristics (copper–titanium and steel–zirco-
nium). To make the comparison more lucid we have selected the identical dimensions of the cylinders and parameters
of heating (radii and lengths of the cylinders 40 mm, heat-transfer coefficients on all the ends 100 W/(m2⋅deg), and
heating power 1 kW/m2). Thus, the dynamics of the spatial distribution of temperature will depend only on the char-
acteristics of heated materials. Table 1 gives the first five roots of the equation J1(µ) = 0, which are related to the
quantities γm by the relation µm = γmR, and the corresponding roots of the transcendental equation (12) γkm.

As is seen from the table, the quantities qkm strongly depend on both the roots of the radial equation J1(µ) =
0 (they change with µm within one system) and the form of the contacting materials (they are dissimilar for the same
µm in different systems).

Figure 1 plots the temperature in the contact plane on the cylinders’ surface as a function of time for the two
systems. The same figure gives the values of the temperature in the steady state under the analogous conditions of

TABLE 1. Roots of Eq. (12) for the Systems Copper–Titanium and Steel–Zirconium

m µm
γ1m γ2m γ3m γ4m γ5m

CuTi FeZr CuTi FeZr CuTi FeZr CuTi FeZr CuTi FeZr

0 0 2.68 6.33 13.91 33.14 33.75 71.60 54.50 96.31 72.73 138.91

1 3.83 38.55 52.01 70.96 86.04 86.87 127.96 111.12 159.42 136.25 194.94

2 7.02 26.17 5.28 68.59 61.10 92.38 101.05 124.59 147.50 150.98 177.30

3 10.17 55.15 19.18 90.11 68.26 127.12 115.94 154.89 158.41 175.86 199.30

4 13.32 36.84 27.57 82.59 76.42 121.73 128.27 154.78 169.16 179.95 217.34

5 16.47 21.48 33.06 66.98 85.69 110.79 137.94 151.04 181.53 178.78 229.26

Fig. 1. Change in the temperature in the contact plane on the surface of the
cylinders in the process of heating: 1) copper–titanium system; 2) steel–zirco-
nium system; 3 and 4) steady-state temperatures calculated for these systems
from the results of [9].

1116



heating and heat transfer, calculated from the results of [9]. As follows from the plots, the calculation results (level of
reaching the steady-state regime) are consistent with a satisfactory degree of accuracy.

The nearly coincident curves of change in the temperature in Fig. 1 can lead us to the conclusion that, under
the same conditions of heat exchange, the distribution of the temperature field in dissimilar systems depens weakly on
their thermophysical characteristics. But this is not quite the case. Figure 2 gives the longitudinal temperature distribu-
tion on the surface of the contacting cylinders and along their central axis in the nearly steady state. On the surface,
the maximum is shifted from the interface (symmetry plane of the systems) toward the material with a lower coeffi-
cient of thermal diffusivity a (titanium or zirconium). On the central axis immediately behind the contact plane, the
temperature rapidly decreases in the same direction. These effects are characteristic of the two systems but they are
much more pronounced in the case of copper and titanium. We can also note an insignificant change in the tempera-
ture from the surface toward the center for the copper cylinder. The difference in the character of the temperature
fields is more pronounced in Fig. 3, where their spatial distribution in the central cylinder planes is given. We observe
a decrease in the temperature toward the central axis and the end surfaces which corresponds to boundary conditions
(3) (lateral heating) and (2) (heat transfer through the ends). But the difference in the behavior of the temperature
function for different materials is quite significant. This is particularly true of copper, whose heating is constant
throughout the volume, in practice. The reason is the thermal properties of the materials under study, which vary in a
rather wide range. For example, the thermal-diffusivity coefficients in the system steel–zirconium are rather close
(a1

 ⁄ a2 C 1.8), and they differ more than ten times for copper and titanium (a1
 ⁄ a2 C 12.6). This is precisely the reason

why the forms of the temperature field in Fig. 3 are dissimilar.
Of great practical interest is such a parameter as the time of reaching the steady-state regime by the process.

It follows from Fig. 1 that this period is very significant (about 1 h). At the same time, as experience shows, the

Fig. 2. Axial temperature distribution in the systems copper–titanium (a) and
steel–zirconium (b): 1) along the generatrix of the cylinders; 2) along the cen-
tral axis; 3) boundary of the contact plane.

Fig. 3. Spatial distribution of the temperature field in the central plane of the
cylinders: a) copper–titanium; b) steel–zirconium.
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steady state is reached much more rapidly. This is attributable to the fact that, in vacuum heating, the basic mecha-
nism of heat removal is radiation, and the heat-transfer coefficient α takes on low values at the beginning of the proc-
ess since the temperature of the heated bodies differs little from the temperature of the ambient medium. The
temperature of the system will increase much more rapidly. Figure 4 gives its change for different values of α. It is
seen that for a small coefficient of heat transfer (characteristic of the beginning of the process) the operating regime
is reached in a few minutes. This result is in good agreement with practical data.

Thus, the obtained analytical solution of the problem formulated enables one to adequately describe the spatial
distribution of the temperature field and its dynamics in the system of bounded heterogeneous bodies for a constant
coefficient of heat transfer and to quite accurately evaluate the process of heating with allowance for the change in the
boundary conditions.

NOTATION

R, radius of the cylinders, m; l1 and l2, lengths of the cylinders, m; QR, surface power of the heat flux,
W/m2; α1 and α2, heat-transfer coefficients, W/(m2⋅oC); a1 and a2, thermal-diffusivity coefficients, m2/sec; λ1 and λ2,
thermal-conductivity coefficients, W/(m2⋅oC); h1 and h2, reduced coefficients of heat transfer, m−1; T1 and T2, tempera-
tures of the cylinders, oC; T

=
1  and T

=
2 , temperatures of the cylinders in the transform domain, oC⋅m2⋅sec; J0 and J1,

Bessel functions of the first kind of zero and first orders; γkm, roots of the transcendental equation (12); s, parameter
of the Laplace transformation; t, time, sec; z and r, integration constants. Subscripts 1 and 2 refer to the first and sec-
ond cylinders respectively.

REFERENCES

1. A. V. Luikov, Theory of Heat Conduction [in Russian], Moscow (1964).
2. E′ . M. Kartashov, Analytical Methods in the Theory of Heat Conduction [in Russian], Moscow (1985).
3. G. N. Watson, A Treatise on the Theory of Bessel Functions [Russian translation], Moscow (1949).
4. H. Bateman and A. Erdelyi, Tables of Integral Transforms [Russian translation], Vol. 1, Moscow (1969).
5. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids [Russian translation], Moscow (1961).
6. V. P. Kozlov, Two-Dimensional Nonstationary Problems of Heat Conduction [in Russian], Minsk (1986).
7. P. A. Mandrik and V. P. Kozlov, Inzh.-Fiz. Zh., 74, No. 2, 157–163 (2001).
8. P. A. Mandrik, Inzh.-Fiz. Zh., 74, No. 5, 153–159 (2001).
9. A. V. Alifanov and V. M. Golub, Inzh.-Fiz. Zh., 76, No. 1, 173–177 (2003).

Fig. 4. Rate of change of the temperature in the contact plane vs. heat-trans-
fer coefficient for the copper–titanium system: 1) α = 100, 2) 50, and 3) 5
W/(m2⋅oC); 4) steady-state temperature calculated from the results of [9].

1118


